But in the U.S., titanium dioxide is found all over the grocery shelves. Candy like Skittles, Starbursts, and Jell-O, gum like Trident White peppermint gum and Mentos Freshmint Gum, cake products like Duncan Hines Creamy Vanilla Frosting, and Nabisco Chips Ahoy! cookies are just a few of the myriad food items that contain the additive.
better


Lithopone, an alternative to titanium dioxide



That being said, titanium dioxide is particularly popular in concealers. As one of the most naturally opaque and pearly-white materials on earth, titanium dioxide has the ability to provide excellent coverage while brightening the skin, whether you’re dealing with blemishes, dark spots, acne, or dark circles under the eye.
We know that there are a lot of suspended organisms and colloidal impurities in natural water. The forms of suspended solids are different. Some large particles of suspended solids can settle under their own gravity. The other is colloidal particles, which is an important reason for the turbidity of water. Colloidal particles can not be removed by natural settlement, because colloidal particles in water are mainly clay with negative electricity The Brownian motion of colloidal particles and the hydration on the surface of colloidal particles make colloidal particles have dispersion stability. Among them, electrostatic repulsion has the greatest influence. If coagulant is added to water, it can provide a large number of positive ions and accelerate the coagulation and precipitation of colloid. Compressing the diffusion layer of micelles makes the potential change into an unstable factor, which is also conducive to the adsorption and condensation of micelles. The water molecules in the hydrated film have fixed contact with the colloidal particles and have high elastic viscosity. It is necessary to overcome the special resistance to expel these water molecules. This resistance hinders the direct contact of the colloidal particles. The existence of some hydrated films depends on the electric double layer state. If coagulant is added to reduce the zeta potential, the hydration may be weakened. The polymer materials formed after coagulant hydrolysis (the polymer materials directly added into water generally have chain structure) play an adsorption bridging role between the colloidal particles. Even if the zeta potential does not decrease or does not decrease much, the colloidal particles can not contact each other and can be adsorbed through the polymer chain Colloidal particles can also form flocs.
This article was written by Kamilah Guiden and reviewed by Megan Meyer, PhD.
In recent years, environmental concerns have shaped the way lithopone is produced and used. Suppliers are now more attentive to the sustainability aspect of their operations, ensuring that lithopone is sourced from eco-friendly processes. Many suppliers have adopted responsible mining practices and have invested in technologies that reduce waste and emissions during production. This shift not only appeals to environmentally-conscious consumers but also helps manufacturers comply with stringent regulations regarding product safety and environmental impact.
While loose titanium dioxide presents a problem, titanium dioxide within sunscreen formulations presents a much safer option than conventional sunscreen chemicals like oxybenzone and octinoxate. However, titanium dioxide may become dangerous when it is nanoparticle size. Generally, nanoparticles can be 1000 times smaller than the width of a human hair. Despite nanoparticles becoming increasingly common across industries, they have not been properly assessed for human or environmental health effects, nor are they adequately regulated. Researchers don’t quite understand the impacts nanoparticles could have on human health and the environment. However, because of their infinitesimally small size, nanoparticles may be more chemically reactive and therefore more bioavailable, and may behave differently than larger particles of the same substance; these characteristics may lead to potential damage in the human body or ecosystem.
Titanium dioxide is found in pretty much all makeup & sunscreen.
And studies have long shown that products applied to the skin end up in the bloodstream within half an hour. With penetration rates depending on where they are applied. Absorption rates for your face & scalp are 5-10 times higher than on other parts of our body (Hotchkiss 1994).
Not to mention that in 2005, the Environmental Working Group published a combination of two studies that found toxic chemicals in the umbilical cord blood of newborn babies born in the U.S. They screened for more than 400 chemicals, and an astounding 287 toxins were detected within the umbilical cord blood of these newborns. Of these 287 chemicals, 217 were neurotoxins, and 208 are known to damage growth development or cause birth defects.
In 2023, the demand for titanium dioxide is expected to reach new heights. One of the main drivers of this growth is the cosmetics and personal care industry. Titanium dioxide is widely used in sunscreens, skin care products and cosmetics for its excellent UV protection properties and ability to provide a smooth surface. With growing awareness of the harmful effects of UV radiation, consumers are increasingly inclined to invest in products with sun protection. This trend is expected to drive the demand for titanium dioxide over the next few years.
Buff percentage refers to the amount of uncoated or partially coated titanium dioxide particles in a product. A higher buff percentage generally indicates a lower level of coating, which can impact the overall performance of the titanium dioxide. Manufacturers must carefully control this percentage to ensure that their product meets the specific requirements of their customers.