- 4. DuPont DuPont is a global science and technology company that produces a wide range of products, including TiO2. The company operates several production facilities worldwide and offers a variety of TiO2 products, including rutile, anatase, and speciality grades. DuPont is known for its commitment to innovation and sustainability and continuously invests in research and development to improve the performance and environmental profile of its TiO2 products.
Freshwater algae show low-to-moderate susceptibility to TiO2 exposure, with more pronounced toxic effects in the presence of UV irradiation. It has also been shown that nano-sized TiO2 is significantly more toxic to algae Pseudokirchneriella sub-capitata than submicron-sized TiO2. Hund-Rinke and Simon reported that UV irradiated 25 nm TiO2 NPs are more toxic to green freshwater algae Desmodesmus subspicatus than UV irradiated 50 nm particles, which is in agreement with Hartmann et al. UV irradiated TiO2 NPs also inactivated other algae species such as Anabaena, Microcystis, Melsoira and Chroococcus. It was demonstrated that smaller particles have a greater potential to penetrate the cell interior than submicron-sized particles and larger aggregates. Studies have shown that the amount of TiO2 adsorbed on algal cells can be up to 2.3 times their own weight.
On absorption of UV light, photo-generated titanium dioxide particles create singlet oxygen, superoxide anions (O2-) and hydroxyl radicals (OH-) that are potent free radicals (1,2). Irradiated particles of titanium dioxide can induce oxidative damage to DNA (2) which can lead to the development of mutant cells and skin cancers (3,4,5,6) and lipid peroxidation of essential functions on the cell membrane (7).
A 2023 study published in the journal Environmental Research, scientists examined the effect of titanium dioxide nanoparticles on important gut bacteria in mice. Their results showed “the growth inhibitory effects could be associated with cell membrane damage caused by titanium dioxide nanoparticles to the bacterial strains. Metabolomics analysis showed that TiO2 NPs caused alterations in multiple metabolic pathways of gut bacteria, such as tryptophan and arginine metabolism, which were demonstrated to play crucial roles in regulating gut and host health.” The researchers also found that four different neuroprotective metabolites “were significantly reduced” in urine and in vitro bacteria and vivo urine samples. The researchers concluded: “Increasing evidence implies that the gut microbiome plays a profound role in regulating host metabolism. Our results illustrated that TiO2 NPs hindered the growth of four beneficial gut bacterial strains.”
- The Versatile World of Wholesale TI02 Powder
Above 10%, 1 kg of TiO2 should be replaced by 1.3 kg of lithopone supplier 30%, reducing the amount of polymer accordingly.
You can find more information about EFSA’s work in the area of food additives on our website
TiO2 NPs appeared to be more toxic to nematode Caenorhabditis elegans than submicron-sized TiO2. At a concentration of 1 mg/l, 7 nm particles affected its fertility and survival rate and were more toxic than 20 nm anatase particles. Similarly, Hu et al. showed that rutile particles (10–20 nm), at concentrations above 1 g/kg soil, can be bio-accumulated in earthworms, where they induce oxidative stress, inhibit the activity of cellulase and induce DNA and mitochondrial damage.
The production of ROS was studied on white blood cells as a model to screen the effect on eukaryotic cells after being exposed to samples and solar simulated irradiation (according to the level of penetration under the skin). For that purpose, the leukocytes were separated from anticoagulated fresh blood using the Ficoll-Hypaque reactive in a well-known technique [33]. Then, 50 μL of suspensions of P25TiO2NPs (0.2 mg/mL and 0.02 mg/mL), vitaminB2@P25TiO2NPs (0.2 mg/mL and 0.02 mg/mL) and vitamin B2 (0.2 mg/mL and 0.02 mg/mL) were prepared and mixed with 50 μL of white blood cells suspension. A solution of 3% H2O2 was used as positive control and PBS as negative control. Then, the samples were irradiated using the LED panel for 3 and 6 h to simulate the light penetration into the skin. Also, a set of samples was kept in the dark as control. Finally, the ROS were detected through the colorimetric assay employing the nitroblue tetrazolium salt (NBT salt) and the absorbance at 650 nm was measured. The experiment was reproduced twice; the standard deviation was calculated and p-value < 0.05 were considered significant.
Magnesium occurs in seawater and in ores such as dolomite (CaCO 3 MgCO 3), magnesite (MgCO 3), and carnallite (MgCl 2 KCl 6H 2O).
≤0.3
The assessment was conducted following a rigorous methodology and taking into consideration many thousands of studies that have become available since EFSA’s previous assessment in 2016, including new scientific evidence and data on nanoparticles.

ZnSO4+BaS→ZnS+BaSO4