- In conclusion, titanium dioxide is a versatile and widely used ingredient in the cosmetics industry. Its benefits include broad-spectrum sun protection, natural pigmentation, chemical stability, and non-irritating properties. While there are some safety concerns regarding its use, regulatory agencies have established guidelines to ensure its safe use in cosmetic products. As the demand for natural and safe cosmetic products continues to grow, the future outlook for TiO2 in the cosmetics industry looks promising.
Freshwater algae show low-to-moderate susceptibility to TiO2 exposure, with more pronounced toxic effects in the presence of UV irradiation. It has also been shown that nano-sized TiO2 is significantly more toxic to algae Pseudokirchneriella sub-capitata than submicron-sized TiO2. Hund-Rinke and Simon reported that UV irradiated 25 nm TiO2 NPs are more toxic to green freshwater algae Desmodesmus subspicatus than UV irradiated 50 nm particles, which is in agreement with Hartmann et al. UV irradiated TiO2 NPs also inactivated other algae species such as Anabaena, Microcystis, Melsoira and Chroococcus. It was demonstrated that smaller particles have a greater potential to penetrate the cell interior than submicron-sized particles and larger aggregates. Studies have shown that the amount of TiO2 adsorbed on algal cells can be up to 2.3 times their own weight.
- The Role of Titanium Dioxide in Rubber A Key Supplier Perspective
- Salad dressing
- In addition to its commitment to quality, Tiona also places a strong emphasis on environmental responsibility


Calcium carbonate is a naturally occurring mineral that is found in rocks and minerals such as calcite, aragonite, and limestone. It is commonly used in industries such as paint, paper, plastics, and rubber as a filler and pigment. The manufacturing process of calcium carbonate involves extracting the mineral from quarries or mines, crushing and grinding it into a fine powder, and then purifying it through various chemical processes.
Freshwater algae show low-to-moderate susceptibility to TiO2 exposure, with more pronounced toxic effects in the presence of UV irradiation. It has also been shown that nano-sized TiO2 is significantly more toxic to algae Pseudokirchneriella sub-capitata than submicron-sized TiO2. Hund-Rinke and Simon reported that UV irradiated 25 nm TiO2 NPs are more toxic to green freshwater algae Desmodesmus subspicatus than UV irradiated 50 nm particles, which is in agreement with Hartmann et al. UV irradiated TiO2 NPs also inactivated other algae species such as Anabaena, Microcystis, Melsoira and Chroococcus. It was demonstrated that smaller particles have a greater potential to penetrate the cell interior than submicron-sized particles and larger aggregates. Studies have shown that the amount of TiO2 adsorbed on algal cells can be up to 2.3 times their own weight.
Made Safe only allows titanium dioxide as part of sunscreen solutions and diaper creams; all titanium dioxide must be non-nanoparticle. Made Safe does not allow titanium dioxide in any other personal care or household products.


Of the products that include the additive in their labels, Thea Bourianne, senior manager at data consultant Label Insights, told Food Navigator USA in May 2021 that more than 11,000 products in the company's database of U.S. food and beverage products listed titanium dioxide as an ingredient. Non-chocolate candy led those numbers at 32%. Cupcakes and snack cakes made up 14%, followed by cookies at 8%, coated pretzels and trail mix at 7%, baking decorations at 6%, gum and mints at 4% and ice cream at 2%.
In food, titanium dioxide is often used as an artificial color additive. Tasha Stoiber, senior scientist at the consumer health nonprofit Environmental Working Group, says titanium dioxide can generally be thought of as a paint primer – it often goes on a hard-shelled candy like Skittles before the color is added to give it a uniform shine.
On absorption of UV light, photo-generated titanium dioxide particles create singlet oxygen, superoxide anions (O2-) and hydroxyl radicals (OH-) that are potent free radicals (1,2). Irradiated particles of titanium dioxide can induce oxidative damage to DNA (2) which can lead to the development of mutant cells and skin cancers (3,4,5,6) and lipid peroxidation of essential functions on the cell membrane (7).