2. Silicone – Used in specific applications where only light loads are applied.
Free the cover by levering gently round the edge with a screwdriver; take care not to bend the flange.
A wide range of industries rely on oil seals to ensure optimal operation of mechanical assemblies. Components in the industrial and automotive fields, such as pumps, fans, electric motors, and other rotating or moving parts, use oil seals to maintain lubrication and keep contaminants from entering the shaft. Seals are especially useful in applications exposed to extreme environmental temperatures and pressures.
Full synthetic oil is ideal for vehicles that demand peak level performance and high levels of lubrication. Full synthetic oil provides higher viscosity levels, resistance to oxidation and thermal breakdown, and helps fight against oil sludge. Plus, it helps improve fuel efficiency and can even increase a vehicle’s horsepower by reducing engine drag.
1) Common seal types and their features
What should you take into account when selecting an oil seal? Different types of oil seals and various types of materials are available, each designed for specific uses. It is also important to select the right size of oil seal for the best results. For this reason, selecting the right oil seal requires adequate understanding of the application in which it will be used.
In addition to preventing oil leaks, the 30-50-10 oil seal also helps to protect the internal components of the machinery or equipment from dirt, dust, and other contaminants. This extends the lifespan of the machinery and ensures its optimal performance.

oil seal 50 * 72 * 10.
B


Oil seals work by squeezing and retaining lubricant in a thin layer between the lip and the shaft. Perfect sealing is ensured by the hydrodynamic action of the rotating shaft, which in turn produces a slight pump action.
R
Without minor lip
Type code
Requirements of the shaft
Even more important than a correct interference fit of the Oil Seal is a perfectly smooth shaft in the region of the seal, particularly if shaft surface speed is high and the medium to be sealed is under a certain amount of excess pressure. The surface roughness of the shaft depends on the average profile depth Ra of the tool marks caused by the machining process. Oil Seals made of PTFE require, independent of the surface speed, a surface roughness of between 0,1 to 0,2 mm, because PTFE has less wear resistance than rubber seals. For normal circumstances, the shaft in the region of the seal must have a surface roughness of approximately: To summarize, the surface of the shaft in the region of the seal should not have noticeable machining marks. For pivoting shafts and other difficult or critical sealing applications, it is recommended that Oil Seals with a helical groove hydrodynamic pattern, which has a pumping effect, be used. When grinding and polishing, an axial movement of the grindstone along the shaft must be avoided in order to prevent machine lay.