Though the regulated use of titanium dioxide in food products is legal in the U.S. and Canada, it's banned in some other countries, notably throughout Europe. In May 2021, the European Food Safety Authority announced that titanium dioxide can no longer be considered safe as a food additive.
One of the key factors that affect the precipitation of titanium dioxide is the precipitation percentage, which is the percentage of titanium sulfate that is converted to titanium hydroxide during the reaction
. The precipitation percentage is influenced by a variety of factors, including the concentration of titanium sulfate, the pH of the reaction mixture, the temperature, and the reaction time.
precipitation of titanium dioxide equation factoryTitanium Dioxide Raw Material Tio2 Powder
- When it comes to the food industry, safety is paramount. This is why suppliers of titanium dioxide food grade play a crucial role in ensuring that the products we consume are not only safe but also of high quality. Titanium dioxide, commonly known as TiO2, is a white pigment that is widely used in various food products due to its excellent whiteness, opacity, and stability.



The calcined product obtained by the ordinary zinc-barium white preparation method is beaten into a slurry, which is then surface-treated with sodium silicate, aluminum sulfate or sodium aluminate and surfactant, and then filtered, washed, dried and pulverized. Can.
How can food businesses comply with this Regulation?
What’s recently changed with titanium dioxide and regulations?
The surge in demand for interior and exterior paints and use of plastic across various end-use industries drive the global Lithopone market. Lithopone white pigment is used in paints and coating systems that find applications in residential and industrial landscapes. Hence, as the construction & building sector flourishes, the demand for building and architectural materials such as paints and coatings will increase. This trend is conducive for the Lithopone market growth. In addition, white plastic materials are increasingly being used in consumer products. Developments in plastic forming technology is anticipated to indirectly boost plastic production, thus, increasing the demand for white pigments during the forecast period.
In 2022, a year after the EFSA recommended against the use of E171, the Food Standards Australia New Zealand (FSANZ) conducted its own reassessment of titanium dioxide as a food additive. The agency concluded that titanium dioxide was indeed safe to use as a food additive. The United Kingdom and Canada came to similar conclusions.
Assessment of skin penetration and biohazard in vivo
The toxicity of P25TiO2NPs was evaluated in both prokaryotic (Fig. 3) and eukaryotic cells (Fig. 4). The XTT assay was chosen to measure the cell viability in bacterial cultures of MSSA, a normal skin microbiota microorganism. The reduction in the viability of samples with bare NPs is notorious, possibly due to the described ROS production from the interaction of P25TiO2NPs with light [37]. This effect seems to be avoided when they are functionalized with vitamin B2. Also, the most concentrated vitaminB2@P25TiO2NPs sample (0.2 mg/mL) shows up to 60% more absorbance after 6 h compared to the bare NPs (due to normal cell replication). This may indicate that the antioxidant effect of the vitamin B2 coating is greater than the oxidation damage produced by the NPs. This protective capacity could be attributed to the glutathione redox cycle and the conversion of reduced riboflavin to its oxidized form [38]. Values of cell viability greater than 100% are not rare and could be understood because the XTT assay actually measure metabolic activity when reducing the tetrazole to formazan. It is usually assumed that conversion is dependent on the number of viable cells, but it could also be related to an expected increased enzymatic activity when cells are exposed to small doses of some new substance. Further analysis showed that this effect was not the only one responsible for better cell viability of vitaminB@P25TiO2NPs treated samples.
Les pouvoirs couvrant et éclaircissant du lithopone normal sont supérieurs à ceux de la céruse et de l'oxyde de zinc, mais inférieurs au Dioxyde de Titane pur, étant le meilleur blanc sous tout rapport. C'est le sulfure de zinc qui, avec son indice de réfraction de 2,37, est l’élément opaque ; le 2nd composé, le sulfate de baryum, joue un rôle de diluant minéral et favorise l'efficacité de la diffusion du premier.
The author thanks Marco Leona, Scientist-in-Charge of the Department of Scientific Research at the Metropolitan Museum of Art for conducting fluorescence spectrometry on Wheel of Fortune and a valuable discussion of the research, as well as Silvia Centeno, Research Scientist at the Metropolitan Museum of Art, who performed Raman analysis on the watercolors and also contributed her insight. The phenomenon of the phosphorescing lithopone was originally discovered during the author's fellowship in the Sherman Fairchild Center for the Conservation of Works on Paper, funded by the Andrew W. Mellon Foundation. The author thanks all her colleagues for their ideas and support during the research of this paper, and special thanks to Rachel Mustalish for her assistance in editing this work.