- Titanium Dioxide A Versatile Pigment for Interior and Exterior Wall Paint Materials
- In conclusion, lithopone is a valuable pigment that offers superior covering power, brightness, and lightfastness in various applications. Its versatility makes it a popular choice in industries such as paint, rubber, plastic, ceramics, and cosmetics. Quotes from suppliers emphasize the importance of lithopone as a key ingredient in different formulations, highlighting its quality and performance. As the demand for high-quality pigments continues to grow, lithopone remains a top choice for manufacturers seeking to enhance the visual appeal and durability of their products.
The leading Chinese TiO2 exporter in value and quantity has been Sichuan Lomon, followed by Henan Billions and Gansu CNNC Huayuan. However, Sichuan Lomon exported a value of titanium dioxide by USD100,000,000 more than the second rank Henan Billions. Henan Billions, on the other hand, exported over USD70,000,000 more TiO2 than Gansu CNNC Huayuan. This demonstrates the huge monopole-like position of the newly merged company Henan Lomon, which can determine the market development for TiO2 in China nearly all alone.
Overall, the Food Directorate's comprehensive review of the available science of TiO2 as a food additive showed:


Pure PVB is non-toxic and harmless to human body. In addition, ethyl acetate or alcohol can be used as solvent, so PVB is widely used in printing ink of food containers and plastic packaging in European and American countries.
Storage safety properties
PVB can be stored for two years without affecting its quality as long as it is not in direct contact with water; PVB shall be stored in a dry and cool place and avoid direct sunlight. Heavy pressure shall be avoided during PVB storage.
Solubility
PVB is soluble in alcohol, ketone, ester and other solvents. The solubility of various solvents changes according to the functional group composition of PVB itself. Generally speaking, alcohol solvents are soluble, but methanol is more insoluble for those with high acetal groups; The higher the acetal group, the easier it is to dissolve in ketone solvents and ester solvents;
PVB is easily soluble in cellosolve solvents; PVB is only partially dissolved in aromatic solvents such as xylene and toluene; PVB is insoluble in hydrocarbon solvents.
Viscosity characteristics of PVB solution
The viscosity of PVB solution is greatly affected by the formula of solvent and the type of solvent; Generally speaking, if alcohol is used as solvent, the higher the molecular weight of alcohol, the higher the viscosity of PVB solution;
Aromatic solvents such as xylene and toluene and hydrocarbon solvents can be used as diluents to reduce the viscosity of PVB solution; The effect of PVB chemical composition on viscosity is summarized as follows: under the same solvent and the same content of each base, the higher the degree of polymerization, the higher the solution viscosity; Under the same solvent and the same degree of polymerization, the higher the acetal group or acetate group, the lower the solution viscosity.
Dissolution method of PVB
Where mixed solvents are used, the dissolution step is to first put aromatic solvents (such as xylene, toluene, etc.) or ester solvents (such as n-butyl acetate, ethyl acetate, etc.) into the mixing, slowly put PVB into the mixing, and then add alcohol solvents (such as n-butanol, ethanol, etc.) after PVB is dispersed and expanded,
At this time, the dissolution time can be shortened by heating; Using this dissolution method, the formation of lumpy PVB can be avoided (because the dissolution time will be several times after the formation of lumpy PVB), so the dissolution speed can be accelerated. Generally, the ratio of aromatic and alcohol solvents is 60 / 40 ~ 40 / 60 (weight ratio), and PVB solution with low viscosity can be prepared.
The solvent composition contains 2 ~ 3wt% water, which can improve the hydrogen bonding strength of alcohol solvents and help the solubility of PVB.
Processing properties
Although PVB resin is a thermoplastic, it has little processability before plasticizer is added. Once plasticizer is added, its processability is very easy.
The purpose of general coatings and adhesives is to change the resin characteristics by adding plasticizers to meet the application requirements, such as film softness, reducing the TG point of the resin, reducing the heat sealing temperature, maintaining low-temperature softness, etc.
Compatibility
PVB can be compatible with a variety of resins, such as phenolic resin, epoxy resin, alkyd resin and MELAMINE resin.
B-08sy, b-06sy and b-05sy with high acetal degree can be mixed with nitrocellulose in any proportion. PVB and alkyd resin are partially compatible. General PVB is compatible with low molecular weight epoxy resin, while high molecular weight epoxy resin needs PVB with high acetal degree to be compatible with each other.

Food preservation and packaging
Below are selected applications of photocatalytic pollutant decomposition processes on titanium oxide:
1. Self-cleaning surfaces: for the production of glass for spotlights, traffic lights, car mirrors, window panes, for road paints, for covering sound-absorbing screens and tunnel walls.
2. Air cleaning and odor removal: filters that are used in enclosed spaces (e.g. public toilets) or filters for air-conditioning equipment.
3. Water treatment: groundwater treatment installations, water purification installations in the intakes of drinking water from rivers.
4. Self-disinfecting materials: towels, linings, clothing, equipment in hospitals, wall surfaces of operating rooms.
5. Removal of lesions: anti-cancer therapy.
Mexican researchers sought to evaluate the effects of E171 across a span of conditions in mice, including its influence on behavior, along with the effects on the colon and liver. The research, published in 2020 in the journal Food and Chemical Toxicology, showed that E171 promoted anxiety and induced adenomas, or noncancerous tumors, in the colon. They also found that E171 heightened goblet cells hypertrophy and hyperplasia, which is typically seen in asthma patients and triggered by smoking or external pollutants and toxins. They also noted mucins overexpression in the mice, which can be linked to cancer cell formation.
For research published in Archives of Toxicology in 2020, scientists fed one group of mice a solution containing titanium dioxide for one month, and compared it to those that did not receive the additive. They found “the richness and evenness of gut microbiota were remarkably decreased and the gut microbial community compositions were significantly changed” in the titanium dioxide group when compared with the control group. The tests also revealed that the titanium dioxide exposure could cause locomotor dysfunction, or mobility issues “by elevating the excitement of enteric neurons, which might spread to the brain via gut-brain communication by vagal pathway.” The researchers concluded: “These findings provide valuable insights into the novel mechanism of TiO2NP-induced neurotoxicity. Understanding the microbiota-gut-brain axis will provide the foundation for potential therapeutic or prevention approaches against TiO2NP-induced gut and brain-related disorders.”
The Journal of the American Institute for Conservation (JAIC) is an international peer-reviewed periodical for the art conservation profession. The Journal publishes articles on treatment case studies, current issues, materials research, and technical analyses relating to the conservation and preservation of historic and cultural works. The topics encompass a broad range of specialties including architectural materials, archeological objects, books and paper, ethnographic materials, objects, paintings, photographic materials, sculpture, and wooden artifacts. Started as the Bulletin of the International Institute for Conservation-American Group (IIC-AG), in April 1961, the Journal matured into its current form in 1977. Since that time JAIC has become a repository for the core body of conservation information through its documentation of new materials, changing methods, and developing standards in the conservation profession. The four-color publication is distributed three times a year to AIC members and museum, library, and university subscribers.
High Scattering Power TiO2 DongFang R5566
To ensure the optimal precipitation percentage, it is important to carefully control these factors during the precipitation process. For example, a higher concentration of titanium sulfate will typically result in a higher precipitation percentage, but may also lead to the formation of impurities. On the other hand, a lower pH of the reaction mixture can promote the precipitation of titanium hydroxide, but may also result in a lower precipitation percentage.
Titanium dioxide is a food additive that can be found in over 3,000 different products in EWG’s Food Scores database.
Titanium dioxide particles help light scatter and reflect, Kelly Johnson-Arbor, MD, a medical toxicology physician at the National Capital Poison Center, told Health. Because of that, we often use it as a whitening agent.
Application:
1. Due to its rheological and optical properties, Lithopone offers technical and economic advantages wherever organic and inorganic resin systems need to be relatively highly pigmented for specific applications. Lithopone has therefore traditionally been used in putties, mastics, jointing and sealing compounds, primers, undercoats and marking paints. In powder coatings it is possible to replace TiO2 partially, very economically.
2. The low Mohs' hardness of Lithopone leads to low abrasiveness in comparison with TiO2.
3. Lithopone 30 % (= 30% zinc sulfide share) is proven to be of particular use as a TiO2 Substitute in thermoplastic masterbatches. Even at very high pigment loadings it disperses easily. A masterbatch containing 50 % TiO2 and 25 % Lithopone 30 % DS has the same hiding power as one containing 60 %TiO2. Cost savings are strongly related to the price ratio of Lithopone and TiO2 and the price of for example polyethylene or polypropylene.
4. The Lithopone batch has a much higher extrusion rate too. Furthermore the impact strength of many thermoplastics such as PP and ABS can be noticeably improved by using Lithopone as a TiO2 substitute. Generally spoken, Lithopone can be used at loadings up to 80 % by weight without causing polymer breakdown
Titanium dioxide A1 adopts good oxidation process, composite inorganic coating and organic treatment, and has the characteristics of excellent particle size distribution, high brightness and high weather resistance. It is recommended for high gloss and high weather resistance coatings, inks and outdoor polymer materials.
Infrared spectra were performed (from 400 to 4000 cm−1) in vitamins@P25TiO2NPs samples and the vitamins alone as controls, employing a Nicolet AVATAR 360 Fourier transform infrared spectrophotometer.